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Abstract- The primary objective of this project is to develop a 

machine learning-based multi-class classification model for 

predicting the occurrence and impact of earthquakes, 

classifying them based on parameters such as magnitude, 

depth, and location for more accurate predictions and 

preparedness. "Predicting Earthquakes: A Multi-class 

Classification Approach with Machine Learning" refers to 

using machine learning algorithms to categorize 

earthquakes by their characteristics, aiming to predict not 

just the occurrence but also the severity and impact, thereby 

enhancing response strategies. Historically, earthquake 

prediction relied on traditional seismology methods like 

studying historical patterns, geological surveys, and seismic 

monitoring, which provided limited accuracy and minimal 

warning time. The traditional systems faced challenges in 

offering long-term predictions, highlighting the need for 

more sophisticated approaches. The motivation for this 

research is to improve prediction accuracy and minimize the 

catastrophic impacts on lives and infrastructure by utilizing 

machine learning to analyze complex seismic data. The 

proposed system utilizes machine learning algorithms to 

analyze seismic data, including parameters like magnitude, 

depth, location, and time of occurrence. The model will 

classify earthquakes into different categories based on these 

factors, enabling more accurate predictions. Machine 

learning, particularly deep learning techniques, can process 

vast amounts of data and identify patterns that traditional 

methods might overlook. This system aims to provide timely 

and accurate predictions, helping authorities and 

communities take proactive measures. 
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I. INTRODUCTION 

 

Earthquakes are highly destructive and unpredictable natural 

disasters, posing significant risks to communities worldwide. 

According to the USGS, between 2000 and 2021, approximately 

18,000 earthquakes of magnitude 5.0 or higher occurred 

annually. In 2020 alone, 69 major earthquakes were recorded, 

including the devastating Aegean Sea earthquake in Turkey, 

which registered a magnitude of 7.0, causing 114 deaths and 

over 1,000 injuries. The Global Earthquake Model (GEM) 

estimates that over 1.5 billion people reside in high seismic-risk 

zones, emphasizing the need for improved prediction and risk 

management strategies. Traditional earthquake prediction 

methods, relying on statistical analysis and geological 

assessments, often lack accuracy and fail to provide timely 

warnings. With increasing urbanization in seismically active 

regions, the potential for catastrophic consequences has grown. 

Between 1990 and 2020, earthquakes were responsible for over 

1.2 million deaths and economic damages exceeding $1 trillion 

worldwide. Machine learning has emerged as a transformative 

tool in seismic prediction, offering enhanced forecasting 

capabilities by analyzing vast datasets and identifying complex 

patterns. Emergency response teams face significant challenges 

in coordinating rescue efforts, as outdated and fragmented data 

often delay critical decision-making. The 2010 Haiti earthquake 

highlighted how data inaccessibility prolonged response times, 

worsening the disaster’s impact. Additionally, high-stress 

environments and operational inefficiencies hinder the 

effectiveness of rescue operations. A machine learning-based 

predictive system could provide real-time insights into 

earthquake magnitude, epicenter, and aftershocks, enabling 

emergency teams to allocate resources efficiently and prioritize 

affected areas. By integrating diverse datasets, such as 

geological, meteorological, and socio-economic factors, 

machine learning can improve prediction accuracy, reduce 

response time, and enhance disaster resilience. 
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This technological advancement promises a more proactive 

approach to earthquake preparedness, ultimately saving lives 

and mitigating economic and social damages. 

Traditional earthquake prediction and response methods have 

significant limitations, including slow data collection, delayed 

processing, and difficulty integrating diverse datasets. 

Traditional approaches rely on sensor networks that transmit 

seismic data to centralized systems, often causing delays, as 

seen in the 2011 Tōhoku earthquake. Additionally, these 

methods struggle to analyze geological, meteorological, and 

socio-economic data efficiently, leading to incomplete risk 

assessments. Machine learning offers a solution by rapidly 

processing vast amounts of data and identifying complex 

patterns that human analysts may miss. This automation 

enhances prediction accuracy, reduces response time, and 

strengthens disaster resilience, ultimately improving public 

safety. 

II. RELATED WORK 

Earthquake prediction remains a significant challenge due to 

the unpredictable nature of seismic events. While risk 

analysis can forecast some events, natural disasters like 

earthquakes are difficult to predict accurately. Precautionary 

measures and rapid response can mitigate human and 

economic losses, but earthquakes remain one of the most 

dangerous disasters due to their sudden occurrence and 

cascading effects like tsunamis, landslides, and industrial 

disasters, such as the Fukushima Daiichi nuclear disaster 

triggered by the 2011 Tōhoku earthquake [1]. 

Since the late 19th century, researchers have explored 

earthquake precursors, including foreshocks, 

electromagnetic anomalies, groundwater changes, and 

unusual animal behavior. Some successful predictions have 

been based on these precursors [2], but they are unreliable 

as they can be associated with non-seismic events. The 

optimism of the 1970s faded due to numerous false 

predictions [3][4] and the lack of statistically significant 

precursors [5]. As a result, no general methodology for 

earthquake prediction currently exists, and scientists remain 

divided on its feasibility. 

Recent advances in machine learning have sparked interest 

in its application to earthquake science. Some studies focus 

on precursor analysis, such as using random forest 

algorithms on acoustic time series data to estimate the time 

until the next artificial earthquake [6]. Others analyze 

aftershock patterns; for example, a neural network trained 

on 130,000 mainshock-aftershock pairs outperformed 

traditional models in predicting aftershock distributions [7]. 

However, these studies address related but distinct problems 

rather than the core challenge of earthquake prediction. 

Despite the relevance of earthquake prediction, few studies 

have systematized knowledge across different fields. A 

2016 survey in CRORR Journal reviewed the use of 

artificial neural networks for short-term forecasting but mainly 

focused on neural network architectures, limiting its audience 

[8]. This paper aims to bridge the gap between seismology and 

computer science by covering all aspects of earthquake 

prediction, including data collection, feature extraction, and 

performance evaluation. 

In seismology, "prediction" implies greater certainty than 

"forecasting" [9]. A prediction must specify location, time 

interval, and magnitude range in a way that allows objective 

validation [10]. Research in this field spans traditional 

seismology and modern AI-driven approaches. Allen [11] 

highlights the ethical and scientific responsibilities in 

earthquake prediction. The USGS [12] maps global 

earthquake distributions, emphasizing the need for region- 

specific models. Richter and Gutenberg [13] laid the 

foundation for magnitude-energy relationships, further 

expanded in Richter's Elementary Seismology [15]. Alves [14] 

pioneered the use of neural networks for earthquake 

forecasting, while Panakkat and Adeli [16][17] developed 

probabilistic neural networks using seismic indicators. 

Martínez-Álvarez et al. [18] applied neural networks to predict 

earthquakes in Chile, demonstrating AI’s regional 

adaptability. Bath [19] and Utsu [20] contributed to 

understanding mantle inhomogeneities and aftershock 

statistics, respectively, which are crucial for refining 

predictive models. 

By integrating traditional seismology with machine learning 

techniques, this research aims to improve earthquake 

prediction accuracy and reliability. This gap includes the 

following aspects: 

• Limited Accuracy: Traditional methods relied on 

historical patterns and geological surveys, leading to 

broad risk assessments with significant uncertainties. 

• Inability to Predict Timing: These methods failed to 

forecast the exact time of earthquakes, making timely 

warnings and preparedness difficult. 

• Minimal Warning Time: Due to timing limitations, 

warnings were often too short for effective evacuation 

and emergency response. 

• Over-reliance on Experts: Predictions depended heavily 

on seismologists' interpretations, leading to 

inconsistencies and reduced reliability. 

• Inadequate for Long-term Forecasting: Traditional 

methods focused on short-term monitoring, limiting long- 

term disaster preparedness. 

• Limited Data Integration: Seismic data, geological 

surveys, and historical records were analyzed separately, 

reducing prediction accuracy. 
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• Difficulty Predicting Magnitude: While risk zones were 

identified, predicting the exact magnitude and impact 

remained challenging. 

• Failure to Detect Emerging Threats: The reactive 

approach overlooked new seismic threats in 

previously inactive regions. 

 

 

III. PROPOSED WORK 

 

The proposed earthquake prediction system utilizes machine 

learning to assess earthquake severity based on parameters like 

magnitude, depth, location, and date-time. It transitions from a 

regression model, which predicts continuous magnitudes, to a 

classification model that categorizes earthquakes into severity 

levels such as 'Strong,' 'Major,' and 'Great.' The preprocessing 

phase involves handling missing data, encoding categorical 

variables, and converting magnitude values into severity 

categories to facilitate classification. 

Extra Trees Classifier (ETC) is an ensemble learning method 

that constructs multiple decision trees using random splits. 

Unlike Random Forest, which optimizes splits based on 

metrics like information gain or Gini impurity, ETC selects 

splits randomly, making it more resilient to overfitting and 

capable of capturing complex feature interactions. This 

randomness enhances generalization and computational 

efficiency, allowing ETC to handle large datasets effectively. 

Additionally, ETC provides feature importance scores and is 

generally robust to noise, making it a promising choice for 

earthquake severity classification. 

To evaluate model performance, accuracy, precision, recall, 

and F1 score are used, with ETC expected to outperform KNN 

due to its superior handling of large-scale and noisy data. Once 

trained, ETC is tested on unseen earthquake data to assess its 

generalization ability. This end-to-end approach—from data 

preparation to model evaluation—ensures that the most 

effective model is selected for real-world earthquake severity 

prediction, offering potential improvements in disaster 

preparedness and risk assessment. 
 

 

Fig 1: Overall design of proposed methodology. 

3.1 Data Preprocessing 

Data preprocessing is the process of preparing raw data and 

making it suitable for machine learning models. This is the 

first important step when creating a machine learning 

model. When creating a machine learning project, you can't 

always find clean, formatted data. Also, when working with 

data, it is essential to clean it and save it in a formatted 

format. To do this, use data preprocessing tasks. Real- 

world data typically contains noise, missing values, and may 

be in an unusable format that cannot be directly used in 

machine learning models. Data preprocessing is a necessary 

task to clean up data and make it suitable for machine 

learning models, which also improves the accuracy and 

efficiency of machine learning models. 

• Feature Engineering: Raw data is transformed into 

features suitable for machine learning models. This 

involves creating new features from existing ones, such 

as extracting month, day, year, hour, and minute from the 

date-time information. This step enhances the model’s 

ability to understand temporal patterns in the data. 

• Handling Missing Values: Missing values in the dataset 

are addressed by filling them with appropriate statistics, 

such as the mode for categorical variables. This ensures 

that the dataset is complete and usable for model training. 

• Removing Unnecessary Columns: Columns that do not 

contribute to the model's predictive power, such as depth, 

alert, continent, and country, are removed. This reduces 

dimensionality and simplifies the dataset. 

• Label Encoding: Categorical variables are converted into 

numerical format using Label Encoding. This step is 

essential for converting non-numeric data into a format 

that machine learning algorithms can process. 

Regression to Classification Conversion: The original problem 

involves predicting the magnitude of earthquakes, which is a 

continuous variable, making it a regression problem. To convert 

this into a classification problem, the continuous magnitude 

values are discretized into categorical classes. 

Classes: 

• Strong: Earthquakes with magnitudes in the range of 6.5 to 

6.9. 

• Major: Earthquakes with magnitudes in the range of 7.0 to 

7.9. 

• Great: Earthquakes with magnitudes in the range of 8.0 and 
above. 

This conversion allows the model to classify earthquakes into 

distinct severity categories rather than predicting a precise 

magnitude value. The new classification problem involves 

predicting whether an earthquake falls into one of these 

categories based on various features like location, date-time, and 

magnitude. 

Importing Libraries: To perform data preprocessing using 

Python, we need to import some predefined Python libraries. 

These libraries are used to perform some specific jobs. There are 

three specific libraries that we will use for data preprocessing, 

which are: 
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NumPy: The NumPy Python library is used for including any 

type of mathematical operation in the code. It is the fundamental 

package for scientific calculation in Python. It also supports to 

addition of large, multidimensional arrays and matrices. So, in 

Python, we can import it as: import NumPy as nm. Here we have 

used nm, which is a short name for NumPy, and it will be used in 

the whole program. 

Matplotlib: The second library is matplotlib, which is a Python 2D 

plotting library, and with this library, we need to import a sub-library 

pyplot. This library is used to plot any type of charts in Python for the 

code. we can import it as: import matplotlib.pyplot as mpt. Here we 

have used mpt as a short name for this library. 

 

Pandas: The last library is the Pandas library, which is one 

of the most famous Python libraries and used for importing 

and managing the datasets. It is an open-source data 

manipulation and analysis library. Here, we have used pd as 

a short name for this library. 

 

Scikit – learn: Scikit-learn provides a range of supervised and 

unsupervised learning algorithms via a consistent interface in 

Python. 

 

3.2 Dataset Description: 

Dataset contains detailed information on significant earthquake 

events, including geographical, seismic, and alert-related 

parameters. Each row represents an earthquake event with the 

following attributes: 

• Title – Descriptive title of the earthquake event, including 
magnitude and nearest location (e.g., M 7.0 - 18 km SW 
of Malango, Solomon Islands). 

 

• Magnitude – Earthquake strength on the Richter scale 

(e.g., 7.0). 

• Date and Time – UTC timestamp of the event (e.g., 22- 

11-2022 02:03). 

• Community Determined Intensity (CDI) – Intensity 
perceived by people, scaled from 1 (not felt) to 10 
(extreme) (e.g., 8). 

• Modified Mercalli Intensity (MMI) – Observed 
earthquake damage level (e.g., 7). 

• Alert Level – Impact severity classification (green, 

yellow, orange, red) (e.g., green). 

• Tsunami Indicator – Indicates whether the earthquake 

triggered a tsunami warning (0 – No, 1 – Yes) (e.g., 1). 

• Significance Score – Impact-based significance measure 
(e.g., 768). 

• Network Code – Organization recording the event (e.g., 

us). 

• Number of Stations (NST) – Seismic stations that detected 

the event (e.g., 117). 

• Minimum Distance (Dmin) – Closest station’s distance 
from the epicenter (e.g., 0.509 degrees). 

• Gap – Maximum azimuthal gap between recording 

stations (e.g., 17 degrees). 

• Magnitude Type – The scale used to quantify magnitude 

(mww, mb, ml) (e.g., mww). 

• Depth – Epicenter depth in kilometers (e.g., 14 km). 

• Latitude & Longitude – Geographic coordinates of the 

epicenter (e.g., -9.7963, 159.596). 

• Location – Nearest named place to the epicenter (e.g., 

Malango, Solomon Islands). 

• Continent & Country – Geographic classification (e.g., 
Oceania, Solomon Islands). 

 

 

Fig 2: Illustration of the sample dataset used for 

Predicting Earth Quakes: A Multi-Class classification 

Approach 

 

3.3 Splitting the Dataset 

 

In machine learning data preprocessing, we divide our 

dataset into a training set and test set. This is one of the 

crucial steps of data preprocessing as by doing this, we can 

enhance the performance of our machine learning model. 

Suppose if we have given training to our machine learning 

Suppose if we have given training to our machine learning 

model by a dataset and we test it by a completely different 

dataset. Then, it will create difficulties for our model to 

understand the correlations between the models. If we train 

our model very well and its training accuracy is also very 

high, but we provide a new dataset to it, then it will decrease 

the performance. So we always try to make a machine 

learning model which performs well with the training set 

and also with the test dataset. Here, we can define these datasets 

as: 

 

 

Fig 3: Splitting the dataset. 

 

Training Set: A subset of dataset to train the machine 

learning model, and we already know the output. 

Test set: A subset of dataset to test the machine learning model, 

and by using the test set, model predicts the output. 

For splitting the dataset, we will use the below lines of code: 

from sklearn.model_selection import train_test_split 

x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 

0.2, random_state=0) 
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• In the above code, the first line is used for splitting arrays 

of the dataset into random train and test subsets. 

• In the second line, we have used four variables for our 

output that are 

• x_train: features for the training data 

• x_test: features for testing data 

 

• y_train: Dependent variables for training data 

• y_test: Independent variable for testing data 

• In train_test_split() function, we have passed four 

parameters in which first two are for arrays of data, and 

test_size is for specifying the size of the test set. The 

test_size maybe .5, .3, or .2, which tells the dividing ratio of 

training and testing sets. 

• The last parameter random_state is used to set a seed for a 

random generator so that you always get the same result, and 

the most used value for this is 42. 

3.4 Extra Trees Classifier 

The Extra Trees Classifier (ETC), also known as Extremely 

Randomized Trees, is an ensemble learning method designed 

to enhance classification performance by aggregating 

predictions from multiple decision trees. It extends the 

Random Forest algorithm but introduces a higher degree of 

randomness in data splitting and feature selection, leading to 

improved generalization and reduced overfitting. ETC is 

widely used in machine learning due to its computational 

efficiency, robustness to noisy data, and ability to capture 

complex feature interactions with minimal tuning. 

Working of ETC: ETC operates by constructing a large 

ensemble of decision trees, each trained independently on the 

dataset. Unlike Random Forest, where tree splits are 

determined by optimizing criteria such as Gini impurity or 

information gain, ETC introduces randomness at two key 

levels: 

• Feature Selection: Instead of selecting the best feature 

based on a statistical criterion, ETC randomly selects a 

subset of features for each tree. 

• Split Point Selection: Within each selected feature, ETC 

chooses a split point at random rather than computing the 

optimal cut-off. 

This high degree of randomness makes ETC less prone to 

overfitting and allows it to capture diverse patterns in the 

dataset. Additionally, in contrast to Random Forest, where 

trees are trained on bootstrap samples, ETC uses the entire 

dataset for training, further enhancing its ability to learn from 

all available data. 

 

 

Fig 4: Extra Tree Classifier 

Architecture of ETC 

The architecture of ETC consists of a forest of decision trees, 

where each tree is trained independently and grown to its full 

depth without pruning. The key components of this architecture 

include: 

• Randomized Feature Selection: Each tree selects a random 

subset of features at each split, ensuring high model 

diversity. 

• Randomized Split Point Selection: Instead of choosing the 

optimal split based on entropy or Gini impurity, split points 

are determined randomly. 

• Full Tree Growth: Each tree is expanded to its maximum 

depth, ensuring thorough learning of patterns without early 

stopping or pruning. 

• Majority Voting for Prediction: Once all trees make 

individual predictions, the final output is determined by 

majority voting in classification tasks or averaging in 

regression problems. 

This architecture leverages the power of bagging (bootstrap 

aggregating) while incorporating randomness, making ETC an 

efficient, parallelizable, and highly generalizable classifier. 

Advantages of ETC 

 

ETC offers several advantages over traditional decision tree- 

based classifiers like Random Forest and Gradient Boosting, 

making it an effective choice for a variety of machine learning 

applications. 

• Reduced Overfitting: The high level of randomness in 

feature and split selection ensures that individual trees are 

highly uncorrelated, preventing the model from overfitting 

to training data. 

• Computational Efficiency: ETC selects splits randomly, 

making it faster and scalable for large datasets. 
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• Robustness to Noisy Data and Outliers:By averaging 

predictions across multiple trees, ETC reduces the 

influence of noise and outliers, making it suitable for real- 

world, messy datasets. 

• Ability to Capture Complex Feature Interactions: The 

diverse trees in ETC learn different relationships between 

input features, allowing the model to recognize complex 

interactions without extensive parameter tuning. 

• Feature Importance Analysis: ETC provides feature 

importance scores, helping analysts identify the most 

significant predictors and guiding feature selection for 

other models. 

• Scalability and Parallelization: The model's ability to 

train multiple trees in parallel makes it well-suited for 

high-dimensional and large-scale datasets. 

• High Generalization Performance: The combination of 

ensemble learning, randomness, and full tree growth 

ensures that ETC maintains strong predictive accuracy 

across various domains. 

 

IV. RESULTS & DISCUSSION 

 

The Extra Trees Classifier (ETC) achieved a remarkable 

performance with an accuracy of 95.54%, indicating that it 

correctly classified approximately 96 out of every 100 

instances in the test set. It exhibited very high precision at 

96.44%, meaning it made few false positive predictions, and a 

recall of 96.01%, reflecting its strong capability to identify 

most true positive instances. The F1-Score of 96.22% 

underscores the model's excellent balance between precision 

and recall. Overall, the ETC demonstrated superior 

performance compared to the KNN classifier, with higher 

precision, recall, and F1 Score, making it a highly reliable and 

effective model for the classification task. 

 

Fig 5: Classification report of ETC 

Figure 6 shows the confusion matrix that represents the model's 

performance in predicting three classes: Strong, Major, and 

Great. To evaluate this performance, we calculated metrics like 

accuracy, precision, recall, and F1-score. These metrics revealed 

that the model excels at predicting Strong and Great cases. 
 

 

Fig 6: Confusion Matrix of ETC 

 

 

The below NumPy array is predicted output i.e. Great means 0 

and 1 means Major and 2 means Strong. 
 

 

Fig 7: predicted output 

 

V. CONCLUSION 

 

The development of a machine learning-based multi-class 

classification model for earthquake prediction represents a 

significant advancement in disaster management and public 

safety. Traditional seismology methods, while foundational, have 

proven inadequate in providing the accuracy and timeliness 

required to mitigate the devastating impacts of earthquakes. By 

leveraging machine learning algorithms, this project aims to 

improve the accuracy of earthquake predictions, enabling 

authorities to take proactive measures in disaster preparedness 

and response. The model's ability to classify earthquakes based 

on parameters such as magnitude, depth, and location will 

provide a more nuanced understanding of seismic activity, 

allowing for more targeted and effective interventions. The 

potential benefits of this approach extend beyond immediate 

disaster response, offering valuable insights for urban planning, 

infrastructure development, and risk assessment. The successful 

implementation of this model could pave the way for more 

advanced predictive technologies in other areas of disaster 

management, contributing to a safer and more resilient society. 
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